
Assigning Meaning to Form

Christos Kloukinas
Dep. of Computing, City University, London, EC1V 0HB, U.K.
Tel: +44.20.7040.8848 Email: C.Kloukinas@soi.city.ac.uk

Abstract

Complex critical systems need to be formally described and anal-
ysed (i.e., engineered). Many different formal methods have been de-
veloped for analysing almost all aspects of these systems and in cer-
tain cases even synthesising parts of these systems themselves through,
e.g., controller synthesis. In many cases however, it is not at all ob-
vious what the results of the tools developed for these methods really
mean and practitioners can spend a considerable time trying to un-
derstand the results, such as a scheduling created by a compiler for
a synchronous language or a timed-automata based controller for a
real-time system. This situation decreases not only the use itself of
these tools and the corresponding formal methods but also hinders the
ability of the practitioners to understand, optimise and validate their
systems.

1 Introduction

Convincing practitioners to start using formal methods tools for the design
and analysis of their systems is not an easy task. Some of the reasons have
to do with problems that the corresponding tools have in scaling up to be
able to handle real world size problems and this is an area which has re-
ceived considerable attention in the past years, leading to spectacular im-
provements. Another reason has to do with usability problems, since many
of the tools demand a significant level of sophistication from the part of the
user. This aspect has also received some attention, with some tools working
in an automated, almost black-box fashion. Such examples are compilers
for synchronous languages, which can produce ready to run code using a
scheduling of the various tasks which has been computed by the compiler it-
self, or controller synthesisers which can produce a set of control constraints

1

C.Kloukinas@soi.city.ac.uk


for a system so that it can meet its requirements. Some users seem to be
still unhappy though. They look at the automatically constructed artifacts
(compiled code, controller constraints, etc.) and try to understand them,
usually failing miserably. The developers of the tools tend to find this situ-
ation a bit bizarre - after all, who would like to examine the machine code
that a compiler outputs and expect to understand it? The sad truth however
is that this situation is not caused by some users having strange, illogical
expectations. Indeed, it is very often imperative for one to be able to under-
stand the output of a tool for a number of reasons:

1. To ensure that the tool has not any bugs or at least has not introduced
any bugs in the code.

2. To understand how the tool has translated some part of the code and see
whether an optimisation could be made possible by expressing the input
differently.

3. In general, to try to figure out further optimisations which could be ap-
plied to the automatically constructed artifact, e.g., further control con-
straints for properties which, for some reason, could not be described in
the original model.

4. To be able to figure out what are the assumptions that the tool has used
in order to derive its results and validate the artifact.

5. To be able to describe the artifact to some certification authority and thus
have it certified.

2 Assigning meaning to form

In our case, we had this experience when we were trying to understand
our synthesised scheduler for a small case study which we had created our-
selves [2]. Even though there was only a single possibility for a deadlock,
the scheduling constraints for avoiding it were not as simple as we might had
hoped and it took us quite some time to fully understand why they were cor-
rect. This effectively meant that for a bigger system and more complex prop-
erties, such as timeliness properties, our synthesised scheduling constraints
would be almost impossible to decipher. For these reasons we attempted
to use machine learning techniques to better structure the scheduling con-
straints produced by our controller synthesiser and present them in a user-
friendly form [1]. The initial results obtained were very positive, showing
the core descriptions of the scheduling constraints in a manner which a prac-
titioner (ourselves included. . . ) could easily understand. It allowed to find

2



out task interdependencies, easily identify possible optimisations, produced
hints for further system transformations, such as safely reducing the non-
determinism of the scheduler or distributing tasks to multiple processors,
etc. These positive initial results have convinced us of the big potential of
the marriage of machine learning/AI techniques with formal methods in solv-
ing the problem of understanding the artifacts produced by formal methods
tools. As such, we believe that the community should start paying more
attention to this problem and to how the different approaches (type sys-
tems, theorem provers, etc.) could take advantage of ML/AI techniques for
rendering their results more easily understood by practitioners.

3 Conclusions

Increasing our level of confidence in the correct behaviour of a complex and
highly critical system naturally requires the use of formal methods for its
design and development. At the same time, it requires that the results of
these formal methods can be easily understood by the practitioners, since
no one can be confident of a proof/controller/etc. that they cannot really
understand, no matter how much mathematical sophistication has been used
in the design and development of the tools which have produced it. In order
to increase our understanding of the artifacts of formal methods tools we
believe that the community should seriously examine the use of machine
learning (and possibly also HCI) techniques for restructuring the artifacts of
the tools and presenting them in a way which is much more user friendly.
By increasing our understanding of how the system works, we can then have
an increased level of confidence in it, find further optimisations, be able to
validate and certify it easier and in general reduce the overall cost of designing
and developing these complex systems.

References

[1] C. Kloukinas. Data-mining synthesised schedulers for hard real-time systems.
In 19th IEEE Conference on Automated Software Engineering (ASE-2004),
pages 14–23, Linz, Austria, Sept. 2004. IEEE Press.

[2] C. Kloukinas and S. Yovine. Synthesis of safe, QoS extendible, application
specific schedulers for heterogeneous real-time systems. In ECRTS 2003, pages
287–294, July 2003. DOI: 10.1109/EMRTS.2003.1212754 .

3

10.1109/EMRTS.2003.1212754

	Introduction
	Assigning meaning to form
	Conclusions

