On Verifiability and Composability for High Confidence Software

Wu-Hon Francis Leung, Computer Science Departnidhtieung@iit.edu

1 Several necessary conditionsfor high confidence

High confidence in a software system depends on thawoughly it is verified.
Presently, software verification relies on testiBgt the software of a cyber-physical
system is typically organized as cooperating cameiirprocesses that must react to
triggering events and change in conditions rapiflhe execution of the processes, the
messages that they exchange and the events thatetteive can interleave in many
different ways. The state space of such a systeexp®nential to these variables.
Testing can only explore a minute portion of thade. Development projects already
are spending a majority of their time and efforttesting, yet many errors are still
found in the field. Therefore, meeting the follogiftverifiability) is necessary:

N1l: Software development must depend more on asseb#sed (or formal)
verification instead of instance based testing.

The problem of verification is made much more difft because the software
base constantly changes as feafume® added to the system. Changing code is error
prone and laborious. The programmer must exammge emount of code line by line.
At the end, he is usually uncertain whether heithastified all the code that need to
be changed and what effect his changes may havieeoother features. The job will
take iterations of testing and debugging. Wheratufe is implemented by modifying
the code of other features, the programs of theufesentangle in the same reusable
program unit (e.g. a method) of the programmingylegye. Entangled programs are
difficult to maintain, verify and reuse. As moreafares are added to the system, the
software becomes exceedingly complex decreasingranmamer productivity and
increasing testing effort. The following (compodityi is also necessary:

N2: A feature can be developed without entangling whthcode of other features.

The problem of program entanglement has severedatns in practice. For
example, with existing programming languages, ttegams of normal processing
and exception handling features are entangled.vAayception thrown by a device
driver sometimes requires manual review of mosthef application code. If the
project is not willing to pay the cost, the softeawill crashes or hanged when the
exception is not caught. This author witnessed thragram entanglement had
degraded programmer productivity to only a coupladred lines of code a year after
a few releases. This problem cannot be solved uskigting general purpose
programming languag@sAs a result, the following is also necessary:

N3: New programming language concepts that facilgalations to N1 and N2.

In section 2, we will elaborate on the challengested by N1 and N2. In section
3 we briefly describe our on going work on N3. Tpasition paper concludes with a
brief remark in section 4.

1 A software project often uses the tdiesture to denote certain functionality of the system. &le,
congestion control is a feature of TCP. The temasure, service, concern and aspect are ofteninsee
literature interchangeably.

2 W. H. Leung, “Program entanglement, feature intiia and the Feature Language ExtensioBsrhputer
Networks, February, 2007.

2 Research challenges

2.1 Featureinteraction isthe main reason for program entanglement

The problem of program entanglement is related h® hotion offeature
interaction. Two featuresnteract if their behavior changes when they are integrated
together. Features are implemented by computerr@mgy whose behavior is
manifested in its execution flow and output for i@eg input. The term feature
interaction was introduced by developers of telemmmications, but its occurrence is
common place. For example, adding exception hagdiinanges the behavior of
existing software from crashing when unusual eventsir. We show if that if (C1)
two featuresnteract, (C2) they are executed in the same sequentiakpsy and (C3)
the implementation programming language requires phogrammer to specify
execution flows, then program entanglement is badle. If two features do not
interact, their programs do not have to entanglether words, feature interaction is
the main reason for program entanglement. The glgarent conditions explain why
existing programming languages cannot separateptg®oe handling code from
normal processing code. C1 and C2 are often dattayehe application, changing C3
is essential to solve the entanglement problem.

We call the condition under which two interactimgtures change their behavior
their interaction condition. Presently, the programmer goes through code trmete
when the interaction condition becomes true r@asdlves the interaction by changing
code to specify the new behavior. The solution ®oddould enable the programmer
to (R1) develop interacting features as separatkeimsependent program modules,
(R2) detect interaction condition among feature®matically, and (R3) the features
can be integrated and have their interaction resbWithout requiring changing code.

We note that the language facilities C macros asykeAts separate code textually
but do not meet these requirements. Empirical sifliconducted a decade apart
have shown that Aspects do not significantly imgrgwogrammer productivity,
despite studies that showed it can greatly reduediries of code to be written.

2.2 Theverifiability challenge may not be solved by the verification tools alone

There have been significant advances in the avenfying computer systems,
especially in the model checking technology andaigorithms to determine the
satisfiability of Boolean formulas. As a resultrrf@al verification is becoming routine
in hardware. But hardware designs are mainly coegbasd finite state machines and
Boolean logic; in software a condition variable niyunbound and one must reason
on predicates of complex data structi@ensequently, previous results in automatic
software verification apply only to asbstraction of the software. The abstraction
itself is a source of error and can rarely keepvitp changes in the software.

More recently, a number of research groups developzdel checking tools that
apply directly to real programs. SLAMis now a commercial product. CMC

3 G.. C. Murphy, et al, “Evaluating Emerging Softedbevelopment Technologies: Lessons Learned from
Assessing Aspect-Oriented Programming,” IEEE TransSoftware Engineering, 1999, 15 (4).

* F. Filho, et al, “A Quantitative Study on the Aspization of Exception Handling,” Proceedings of &GP
Workshop on Exception Handling in OO Systems, R0{)5.

5 T. Ball et al, “The SLAM Project: Debugging Syst&uftware via Static Analysis,” Proceedings of Biptes of
Programming Languages, 2002.

5 M. Musuvathi et al, “CMC: A Pragmatic ApproachMmdel Checking Real Code,” Usenix, OSDI, 2002.

reported the ability to handle software subsystemtis tens of thousands of lines of
code. But all of them also reported significantitations.

The root cause of the limitation is tkgate explosion problem: the exponential
increase in the state space that the model cheakst explore as the number of state
variables in a program and their value set increlstelel checkers for hardware
benefits from very efficient Boolean SAT solverxidfing SAT solvers for predicate
formulas require iterations of solving NP hard peots. The effort spent by existing
tools to compress the state space is already héeaic sed. To finally make this
technology practical on software with scale wiledeadditional innovation.

3 Alanguage approach towards high confidence

3.1 Abriefintroduction to the Feature L anguage Extensions (FL X)

FLX is a set of programming language constructs tledaxes C3 and supports
nonprocedural programming. A program unit in FLXnsists of a condition part and a
program body part. The program body part gets éedcwhen its corresponding condition
part becomes true; the programmer does not spideifgxecution flows of program units.

FLX provides language constructs for the programimerganize program units
into features. He develops a feature followingnaodel instead of reading the code of
other features. Features are integrated and haweitkeraction resolved in f@ature
package without requiring changing code. Interaction coiothis among features are
detected automatically. Thus FLX meets R1, R2 a3l Reatures and feature
packages are reusable and can be packaged diljetenneet different user needs.
FLX has been implemented on Java similar to the thayC++ added object oriented
programming language constructs to C. Our expegieficising it has been positfve

3.2 Theverifiability of programswritten in FL X

FLX is designed so that programs written in it via#é amenable for automatic
verification. An executable FLX program is compileto a finite state machine even
if its state variables are unbound. FLX providesiglaage constructs for the
programmer to provide input to support an efficiérat order SAT solver to handle
predicates of complex and arbitrary data typess BAT solver is needed also for
interaction condition detection. The FLX first ordeAT solver is NP-complete as it
first transforms a first order predicate formulait® disjunctive normal form. But it
does not require iterations of solving NP hard f@ols as in existing algorithms.

4 Concluding Remarks

N1, N2 and N3 are necessary but not sufficient tmms. For example, it is not
clear that one cacompletely verify a software system by assertions. But meetie
challenges will greatly improve confidence in saftes and programmer productivity.
We just started the development of an operatintesykernel subsystem using it, as
well as a model checker for FLX taking advantagthefproperties described in 3.2.
Bio: Dr Wu-Hon Francis Leung is an IEEE Fellow cited fus contributions to
operating systems, protocols, and programming nasthde received his Ph.D. in CS
from the University of California, Berkeley. He ha®re than 20 years’ of industrial
experience in software development and researadndredded systems at Bell Labs
and Motorola. He joined the faculty of the Compu8aience Department of IIT
recently and can be reached ang@iit.eduand (630) 697-4256.

