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1 Several necessary conditions for high confidence 
High confidence in a software system depends on how thoroughly it is verified. 

Presently, software verification relies on testing. But the software of a cyber-physical 
system is typically organized as cooperating concurrent processes that must react to 
triggering events and change in conditions rapidly. The execution of the processes, the 
messages that they exchange and the events that they receive can interleave in many 
different ways. The state space of such a system is exponential to these variables. 
Testing can only explore a minute portion of that space. Development projects already 
are spending a majority of their time and effort in testing, yet many errors are still 
found in the field. Therefore, meeting the following (verifiability) is necessary: 
N1:  Software development must depend more on assertion based (or formal) 
verification instead of instance based testing. 

The problem of verification is made much more difficult because the software 
base constantly changes as features1 are added to the system. Changing code is error 
prone and laborious. The programmer must examine large amount of code line by line. 
At the end, he is usually uncertain whether he has identified all the code that need to 
be changed and what effect his changes may have on the other features. The job will 
take iterations of testing and debugging. When a feature is implemented by modifying 
the code of other features, the programs of the features entangle in the same reusable 
program unit (e.g. a method) of the programming language. Entangled programs are 
difficult to maintain, verify and reuse. As more features are added to the system, the 
software becomes exceedingly complex decreasing programmer productivity and 
increasing testing effort. The following (composability) is also necessary: 
N2: A feature can be developed without entangling with the code of other features. 

The problem of program entanglement has severe implications in practice. For 
example, with existing programming languages, the programs of normal processing 
and exception handling features are entangled. A new exception thrown by a device 
driver sometimes requires manual review of most of the application code. If the 
project is not willing to pay the cost, the software will crashes or hanged when the 
exception is not caught. This author witnessed that program entanglement had 
degraded programmer productivity to only a couple hundred lines of code a year after 
a few releases. This problem cannot be solved using existing general purpose 
programming languages2. As a result, the following is also necessary: 
N3: New programming language concepts that facilitate solutions to N1 and N2. 

In section 2, we will elaborate on the challenges posted by N1 and N2. In section 
3 we briefly describe our on going work on N3. This position paper concludes with a 
brief remark in section 4. 

                                                        
1 A software project often uses the term feature to denote certain functionality of the system. For example, 
congestion control is a feature of TCP. The terms feature, service, concern and aspect are often used in the 
literature interchangeably. 
2 W. H. Leung, “Program entanglement, feature interaction and the Feature Language Extensions,” Computer 
Networks, February, 2007. 
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2 Research challenges 
2.1 Feature interaction is the main reason for program entanglement 
The problem of program entanglement is related to the notion of feature 

interaction. Two features interact if their behavior changes when they are integrated 
together. Features are implemented by computer programs whose behavior is 
manifested in its execution flow and output for a given input. The term feature 
interaction was introduced by developers of telecommunications, but its occurrence is 
common place. For example, adding exception handling changes the behavior of 
existing software from crashing when unusual events occur. We show in 2 that if (C1) 
two features interact, (C2) they are executed in the same sequential process, and (C3) 
the implementation programming language requires the programmer to specify 
execution flows, then program entanglement is inevitable. If two features do not 
interact, their programs do not have to entangle. In other words, feature interaction is 
the main reason for program entanglement. The entanglement conditions explain why 
existing programming languages cannot separate exception handling code from 
normal processing code. C1 and C2 are often dictated by the application, changing C3 
is essential to solve the entanglement problem. 

We call the condition under which two interacting features change their behavior 
their interaction condition. Presently, the programmer goes through code to determine 
when the interaction condition becomes true and resolves the interaction by changing 
code to specify the new behavior. The solution to N2 should enable the programmer 
to (R1) develop interacting features as separate and independent program modules, 
(R2) detect interaction condition among features automatically, and (R3) the features 
can be integrated and have their interaction resolved without requiring changing code. 

We note that the language facilities C macros and Aspects separate code textually 
but do not meet these requirements. Empirical studies3,4 conducted a decade apart 
have shown that Aspects do not significantly improve programmer productivity, 
despite studies that showed it can greatly reduce the lines of code to be written. 

2.2 The verifiability challenge may not be solved by the verification tools alone 
There have been significant advances in the art of verifying computer systems, 

especially in the model checking technology and in algorithms to determine the 
satisfiability of Boolean formulas. As a result, formal verification is becoming routine 
in hardware. But hardware designs are mainly composed of finite state machines and 
Boolean logic; in software a condition variable may be unbound and one must reason 
on predicates of complex data structure. Consequently, previous results in automatic 
software verification apply only to an abstraction of the software. The abstraction 
itself is a source of error and can rarely keep up with changes in the software.  

More recently, a number of research groups developed model checking tools that 
apply directly to real programs. SLAM5 is now a commercial product. CMC6 
                                                        
3 G.. C. Murphy, et al, “Evaluating Emerging Software Development Technologies: Lessons Learned from 
Assessing Aspect-Oriented Programming,” IEEE Trans. on Software Engineering, 1999, 15 (4). 
4 F. Filho, et al, “A Quantitative Study on the Aspectization of Exception Handling,” Proceedings of ECOOP 
Workshop on Exception Handling in OO Systems, July, 2005. 
5 T. Ball et al, “The SLAM Project: Debugging System Software via Static Analysis,” Proceedings of Principles of 
Programming Languages, 2002. 
6 M. Musuvathi et al, “CMC: A Pragmatic Approach to Model Checking Real Code,” Usenix, OSDI, 2002. 
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reported the ability to handle software subsystems with tens of thousands of lines of 
code. But all of them also reported significant limitations.  

The root cause of the limitation is the state explosion problem: the exponential 
increase in the state space that the model checker must explore as the number of state 
variables in a program and their value set increase. Model checkers for hardware 
benefits from very efficient Boolean SAT solvers. Existing SAT solvers for predicate 
formulas require iterations of solving NP hard problems. The effort spent by existing 
tools to compress the state space is already heroic (e.g. see6). To finally make this 
technology practical on software with scale will need additional innovation. 
3 A language approach towards high confidence 

3.1 A brief introduction to the Feature Language Extensions (FLX) 
FLX is a set of programming language constructs that relaxes C3 and supports 

nonprocedural programming. A program unit in FLX consists of a condition part and a 

program body part. The program body part gets executed when its corresponding condition 

part becomes true; the programmer does not specify the execution flows of program units. 

FLX provides language constructs for the programmer to organize program units 
into features. He develops a feature following a model instead of reading the code of 
other features. Features are integrated and have their interaction resolved in a feature 
package without requiring changing code. Interaction conditions among features are 
detected automatically. Thus FLX meets R1, R2 and R3. Features and feature 
packages are reusable and can be packaged differently to meet different user needs. 
FLX has been implemented on Java similar to the way that C++ added object oriented 
programming language constructs to C. Our experience of using it has been positive2. 

3.2 The verifiability of programs written in FLX 
FLX is designed so that programs written in it will be amenable for automatic 

verification. An executable FLX program is compiled into a finite state machine even 
if its state variables are unbound. FLX provides language constructs for the 
programmer to provide input to support an efficient first order SAT solver to handle 
predicates of complex and arbitrary data types. This SAT solver is needed also for 
interaction condition detection. The FLX first order SAT solver is NP-complete as it 
first transforms a first order predicate formula to its disjunctive normal form. But it 
does not require iterations of solving NP hard problems as in existing algorithms. 
4 Concluding Remarks 

N1, N2 and N3 are necessary but not sufficient conditions. For example, it is not 
clear that one can completely verify a software system by assertions. But meeting the 
challenges will greatly improve confidence in software and programmer productivity. 
We just started the development of an operating system kernel subsystem using it, as 
well as a model checker for FLX taking advantage of the properties described in 3.2. 
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