
Observations and directions for high-confidence sensor networks

Daniel Andresen John Hatcliff Gurdip Singh Steve Warren

Advances in communication and computing technolo-

gies are enabling deeply embedded, networked systems of

sensors that can collect real-time data from a number of

different, remote sources. Such embedded sensor networks

have a wide range of military, medical, agricultural, en-

vironmental, commercial, and homeland security applica-

tions. As researchers at Kansas State University (KSU), we

have great interest in aggressively pursuing sensor network

technology in agro-medical domains because advances in

these domains are important to the medical field, our lo-

cal/regional economies and to KSU’s mission as a land-

grant university.

Figure 1. Envisioned cattle health monitoring
system (left), Existing cattle monitoring com-

ponent (right)

In this discussion, we draw our examples from major

agro-medical applications in veterinary telemedicine which

we have been working with for several years. sensing. Fig-

ure 11 shows a simple application that employs a network

of environmental and motion sensors to remotely assess an-

imal state-of-health. The broad goal of such systems is to

provide remote, easily accessible, objective measures that

highlight specific animals or groups of animals for the pur-

pose of concentrating the full efforts of the labor and vet-

erinary healthcare force. The benefits of such targeted in-

formation include (a) more efficient allocation of resources,

and (b) increased efficiency for first responders and the in-

dustry as a whole. Furthermore, most of these technologies

1 Warren, S., D. Andresen, L. Nagl, S. Schoenig, B. Krishnamurthi, H.
Erickson, T. Hildreth, D. Poole, and M. Spire. “Wearable and Wire-
less: Distributed, Sensor-Based Telemonitoring Systems for State of
Health Determination in Cattle,” 9th Annual Talbot Informatics Sym-
posium, July 25, 2004.

and infrastructure are highly transferrable to human medi-

cal care.

Given the fast emergence of novel sensor applications

like these, techniques are needed that allow developers

without extensive computer science backgrounds to rapidly

design and prototype sensing applications. Any such devel-

opment solutions must carefully take into account the fol-

lowing characteristics that differentiate sensor applications

from traditional distributed applications:

1. In contrast to most information systems, develop-

ment and knowledge required is not simply limited

to the application layer. Rather, development requires

knowledge about multiple aspects/dimensions of the

system ranging from hardware, networking, software

architecture, application logic, and domain knowl-

edge (what information should we gather to make ap-

propriate inferences for a particular domain).

2. Sensor network applications typically involve a large

number of heterogeneous components with several

crosscutting logical sub-systems involved in the de-

tection/control of different physical phenomena or ob-

jects.

3. Sensor systems are highly dynamic and different sub-

systems may be active at any given time depending on

what needs to be sensed and controlled. For example,

in Figure 1, the GPS sensor subsystem may remain in-

active until alerted by the motion sensors that move-

ment is taking place (thus conserving battery power).

4. Sensor platforms are resource constrained with lim-

ited power, memory, transmission and computing ca-

pabilities.

5. Designing a sensor application typically is a multidis-

ciplinary exercise involving a variety of domain ex-

perts each having a different view of the system. For

example, a medical/controls expert may want to de-

sign the system in Figure 1 taking a centralized view

which may conflict with the decentralized view a net-

working expert has to contend with during deploy-

ment.



6. Sensor applications typically have a combination of

soft and hard real-time constraints. However, they of-

ten are deeply embedded where the underlying net-

work links may be unpredictable with respect to la-

tency and reliability.

The characteristics of sensor applications mentioned above

make their design and implementation a difficult task, and

the design teams are often faced with several challenges, as

discussed in the following:

1. The large scale, heterogeneous, multidisciplinary na-

ture of sensing applications makes it hard for design-

ers to have a complete, coherent a priori view of the

implementation. For example, the initial design of the

application in Figure 1 may proceed with a electronics

engineer designing the biomedical sensors and a vet-

erinarian designing the system in terms of the level

of temperature sensed, analysis to be done and the

control actions to be taken (such as adjusting sensor

range/frequency). Although one would like to present

such an abstract model of programming, the design

team cannot be isolated from system concerns such

as how many sensors are needed, can a mix of sen-

sors with high and low reliability be used, how data

from multiple sensors is fused, and how long will it

take for the data to be analyzed. Implication: frame-

works to design large-scale sensor systems with capa-

bilities for modeling at different levels of abstraction

are needed. These frameworks must allow systems to

be developed in a step-wise manner with different as-

pects and details of the system being introduced in the

refinements.

2. Although the communication patterns and protocols

used may differ from application to application, com-

monalities across applications need to be exploited

to enable code-reuse and rapid development of sensor

networks. For example, if the system in Figure 1 were

to be re-deployed from a pen to open terrain where

animals are randomly dispersed, then we would like

to reuse as much of the design as possible. Likewise,

we would like to exploit the commonalities of this ap-

plication with others such as those for environmen-

tal monitoring that collect environmental data in an

open terrain. Implication: a key challenge is to pro-

vide development environments that allow designers

to organize design knowledge and software in a man-

ner which enables systematic reuse of system compo-

nents and architecture, as well of a variety of other de-

velopment artifacts, in families of similar sensor sys-

tems.

3. Sensing and control activities performed in sensor ap-

plications are often distributed and dynamic in nature.

Implication: abstractions to support modeling and

implementation of distributed interactions are needed.

These abstractions must be able to accommodate and

reconcile the different views of an interaction adopted

by different design team members, and facilitate de-

velopment by non-experts.

4. Given their resource constrained nature, sensor plat-

forms often provide minimal (or no) OS and proto-

col support and leave aspects such as reliability and

synchronization to the application designers. Impli-

cation: support is needed to allow designers to specify

and manage QoS requirements, and implement proto-

cols required to satisfy these requirements.

5. Designers may be faced with several choices while

mapping system requirements to available services or

when designing new services. For example, for the ap-

plication in Figure 1, the designer may have to de-

termine the number of sensors and base stations re-

quired, the parameters of the individual sensors (e.g.,

sensing frequency and range) and the logical topol-

ogy (linear vs ring) to arrange the sensors. Implica-

tion: tools are needed to aid the designer in mak-

ing these choices. In particular, development environ-

ments must allow a variety of mathematical proce-

dures and simulation tools to be plugged in for analy-

sis at different points to aid in the design process.

6. As mentioned above, rapid, end-to-end development

of sensor network applications will require the sup-

port of a number of tools for modeling, analysis, code

synthesis, and deployment. There has been a consid-

erable amount of work in developing various tools

to address these issues. Implication: programming

platforms are required that allow existing tools to be

leveraged in the unified manner for end-to-end sys-

tem development.

There has been a significant amount of research done in

the past few years to develop protocols addressing issues

specific to sensor networks such as limited power, sensor

failures, and unreliable communication. Leveraging these

underlying protocols, a number of frameworks to program

sensor networks have been proposed to address the chal-

lenges listed above. While node-centric frameworks sim-

plify programming, they may not scale to large systems

as the designer must explicitly code distributed interactions

such as discovering neighbors, sharing data with neighbors

and coordinating sensing activities. also lack abstractions

for modeling dynamic, group interactions. Recent work on

middleware-based and macro-programming approaches are

a step in the direction of programming multi-node inter-

actions. While these abstractions have been shown to be

reusable in a variety of applications, they represent pro-

gramming at a specific level of abstraction. Frameworks are

needed not only to allow specification of systems at differ-



ent levels of abstractions, but also to provide their imple-

mentations as different design choices, expose the proper-

ties of each abstraction (e.g., message cost, latency, level of

consistency of shared data) at the design level, and provide

guidelines and analysis engines to determine which one is

more suitable for a specific application.

We suggest complementing and advancing this previous

work by embracing an approach that combines two key en-

ablers of recent successes in development of families of dis-

tributed systems. Emerging model-driven design and im-

plementation technologies are using information captured

by models, constraints, and analyses to provide automated

design advice and to automatically configure and optimize

components and underlying services. Large scale develop-

ment efforts are also increasingly being based on software

product lines - a development process for families of simi-

lar products that aims to drive down development time and

costs by systematically reusing infrastructure and common

application components across many applications within a

particular product family. For example, a framework for

model-driven, product line-based design and implementa-

tion of sensor network applications could be built by en-

hancing Cadena, an integrated environment we have devel-

oped for designing real-time embedded systems.

S2

S1

S3

S4

Code

Generation

J−sim

Modelling

Formal

Analysis

Sensor Network
Frameworks

...

...

...

Plugins

Rn

Signal Aggregation

R1

C1 Cn

Mesh

Ring

Motion

Control

Software

Engineering

Networking

and Connectivity

Expertise
Expertise

Data−analysis

Domain−specific

Modeling Languages
Sensor−technology

Expertise

TB1

Domain

Expertise

Sensor

Timer

S
ty

le
 H

ie
ra

rc
h

y

A
b

s
tr

a
c

ti
o

n
 L

a
y

e
rs

CADENA

Tree

TBn

Physical Network Connector

Envi−
ronment

Figure 2. CADENA managing the multi-layered
development process

To enable systematic reuse across families of products

within multiple sensor network domains, we suggest an in-

frastructure for building product lines (i.e., a product line

for product lines) to support product line-based develop-

ment for families of sensor networks in multiple sensing do-

mains. Within each product line, our infrastructure would

enable a novel domain-specific modeling language hierar-

chy that allows programming at different levels of abstrac-

tion within a sensor system. Components and other architec-

tural elements appropriate for each specification level will

be identified. This approach exposes different programming

views at each level, appropriate for different domain ex-

perts in the design team, and allows various aspects and sys-

tem details to be introduced in a step-wise manner. To pro-

vide building blocks common to many sensing applications,

we require the investigation of mechanisms to model and

implement dynamic, distributed interactions among sensor

network components. For example, Cadena uses the notion

of software connectors to model inter-component interac-

tions and the underlying middleware services. The connec-

tor mechanism could be enhanced to capture different forms

of multi-component interactions. Figure 2 shows different

types of connectors (Signal Aggregation, Tree, Mesh) being

used at different specification levels (for example, level S2

describes interactions assuming a centralized view whereas

level S3 takes a decentralized view but assumes a logical

topology). A library of pre-defined connectors for differ-

ent product lines, mechanisms to define new connectors and

to arrange them in a refinement hierarchy should be devel-

oped.

To configure underlying middleware and communication

services, an infrastructure should be developed to associate

domain-specific attributes and QoS properties with com-

ponents and connectors, and to specify constraints on at-

tributes and properties spanning multiple components and

connectors at the same abstraction level and across levels.

To aid the designer in making design choices as we move

down the hierarchical model, the tool should include a va-

riety of mathematical analysis and simulation engines as

plug-ins such as J-Sim and TOSSIM, both which are compo-

nent based and include capabilities to model various types

of sensor nodes and communication channels.

Biographies

Our authors have wide-ranging experience in building

and applying model-driven development tools, sensor ap-

plications development, distributed algorithm, middleware

and wireless communication. Hatcliff, Singh and colleagues

have worked on building the Cadena integrated develop-

ment environment for model-driven design of component-

based systems. Andresen has led several multidisciplinary

projects in the areas of Veterinary Telemedicine. Warren has

extensive experience developing sensors and protocols for

medical applications.

Daniel Andresen, Computing & Information Sciences,

Kansas State Univ., 785-532-7914, dan@k-state.edu.

John Hatcliff, Computing & Information Sciences, Kansas

State Univ., 785-532-7950, Hatcliff@k-state.edu.

Gurdip Singh, Computing & Information Sciences, Kansas

State Univ., 785-532-7945, gurdip@k-state.edu.

Steve Warren, Electrical & Computer Engineering, Kansas

State Univ., 785-532-4344, swarren@k-state.edu.


