[image: image1.jpg]OlgParent

In the above figure, let’s say that OldParent is passed in from a previous rule (bound to an input port), and that we find ClassB, ClassC, and ClassConn contained inside OldParent. We want to move ClassB, ClassC, and ClassConn to be contained inside NewParent.

We draw the pattern to match just as before; however, all objects we want to move to a new parent we connect to a new type of object called a “Group” object. After all matches are found, then we do the moving operations as a whole. As before, Guard conditions can be used to filter matches before the groups are formed.

Also, the Group object will have a filtering condition which can decide when to create a new “NewParent.” That is, for each Group, an attribute on the Group object will decide whether or not we move all of the Objects contained by the Group to an existing “NewParent” or whether we create a new “NewParent.”
We have to deal with any associations between “ClassB” and “ClassC” and other objects that are not part of the pattern we have drawn; we have decided the following: any associations that ClassB or ClassC objects share between objects that are also being moved to NewParent will be preserved; any other associations will be dropped automatically. For instance, in the above example, if there are any other associations between ClassB and ClassC objects, then they will be preserved inside the NewParent object. Say there is another class, ClassA, that is not moved during the rule, (that is, ClassA is still contained in OldParent), and that before the move, ClassB had a simple association with ClassA. Then after the move, the association between ClassB and ClassA will be removed.
Copying objects will work in almost the same way as moving (with regards to “dangling” associations). A new copy of the objects will be created in NewParent, dangling associations will be removed, and existing associations between objects matched in the pattern will be preserved.

A special case is made for reference objects; since they can point to an object contained in any other part of the model, none of their associations will be removed for either move or copy. Also, the default for copying a reference will have the new reference point to the same object as the original reference (like a bitwise C++ copy), but with the option to set the reference to NULL.

