1
Page 13
Multigraph Kernel 6.0 User’s Manual

Multigraph Kernel Version 6.0 User’s Manual

Csaba Biegl

MCS Group, Department of Electrical Engineering

Vanderbilt University

October 1997

Abstract

The Multigraph Kernel is a dynamic macro-dataflow execution environment that can execute on single processor or distributed parallel architectures. Dataflow control graphs can be built at run time, from user supplied functions, to be executed at the various nodes of the graph. A full set of API services is provided to control the run-time behavior of the synthesized applications.

Table of Contents

41
Introduction

2
Distributed Software
4
3
Multigraph Kernel API
5
3.1
Data Types
5
3.2
Constants
5
3.2.1
Error codes
5
3.2.2
Error return values
6
3.2.3
Data type codes
6
3.2.4
Node triggering modes
7
3.2.5
Miscellaneous constants
7
3.3
Global variables
7
3.4
API functions
7
3.4.1
Host configuration calls
7
3.4.2
Dataflow graph node calls
8
3.4.3
Dataflow graph connection calls
9
3.4.4
Script calls
10
3.4.5
Dataflow graph control calls
10
3.4.6
Memory management calls
11
3.4.7
Initialization and dataflow execution calls
12

Introduction

The computational model supported by the Multigraph Kernel is a dynamic macro-dataflow model. It is macro-dataflow because the activities performed at the nodes of the dataflow control graph are at the function (procedure, subroutine) complexity level. It is dynamic because dataflow control graphs can be built and modified at run time and propagated data can be inserted, extracted or inspected concurrently with dataflow execution.

Synthesized applications are determined by their dataflow control graphs. These graphs have two main components: nodes and connections. Dataflow nodes are defined by the function, called script, that is executed whenever the node is activated, and by their input-output ports. The node I/O ports are linked together with dataflow connections. Every node I/O port can have several connections going to or starting from it. This way the node script can use each port to implement a distinct I/O functionality without having to worry about the number of producers or consumers sending or receiving data to or from the given port.

The Kernel allows the propagation of “standard” scalar data (integers of varying widths, floating point values) and memory buffer (array) types between nodes. To support the creation and propagation of data objects which don’t “fit” into the standard scalar types, the Kernel provides a memory allocator facility with automatic garbage collection.

The dataflow nodes’ execution is controlled by their scheduling attributes: their triggering mode and priority. The triggering mode determines when a node is considered to be ready for execution. It can be either ifany (only a single input is necessary on any of the input ports), ifall (all inputs are necessary) or custom (user defined combinations of available input data subsets). The status of the output ports does not affect a node’s schedulability. The execution order of ready nodes is determined by their priority, which is a user defined non-negative integer value. Zero priority value means that the node is stopped, all higher values will result in the node’s eventual execution.

The Multigraph Kernel transparently supports building dataflow control graphs on distributed parallel architectures. It accomplishes this using a host mechanism which allows nodes to be created in remote dataflow processes. Nodes created in different processes can be connected just as local nodes, the Kernel takes care of all necessary data propagation whenever necessary.

1 Distributed Software

The Multigraph Kernel is distributed in source form for UNIX architectures. The distribution directory structure is as follows:

base

(contains top-level ‘makefile’)

src

(sources for sequential version)

mpi-src

(distributed version sources – needs installed MPI)

include

(“public” include files)

lib

(location for compiled libraries)

demo

(a demo program)

doc

(documentation: MS Word, ASCII text, PS)

The top-level ‘makefile’ will build the libraries by default. It also accepts the ‘clean’ and ‘demo’ targets. Note that the source directories also contain links to the demo program – versions of the demo program built in these directories will contain more detailed debug information for a source-level debugger.

2 Multigraph Kernel API

This section describes the application program interface as declared in the public Kernel include file “mgk60.h”

2.1 Data Types

mgk_error_code
(enum …)

error code returned by certain Kernel calls
mgk_data_type
(unsigned int)
data type code
mgk_data_typep
(unsigned int*)
pointer to above
mgk_nodep

(void*)

dataflow node handle
mgk_hostp

(void*)

distributed dataflow process handle
mgk_script

(void(*)(void))
function type which can be attached to a node
mgk_trigger_mode
(enum …)

node triggering mode
mgk_portmask
(int[])

node input data presence bitmap
2.2 Constants

2.2.1 Error codes

These are the error codes which can be generated by the various Multigraph Kernel calls. They are of the ‘mgk_error_code’ data type.

E_GENERROR

general (unknown) error

E_SUCCESS

no error

E_SCRIPTNOTFOUND

script not found

E_NOTNODE

not a node

E_NOTBUFFER

not a buffer

E_BUFFERUSED

buffer in use

E_NOTHOST

not a host descriptor

E_BADPORTIX

port index outside index range

E_BADTRIGGER

invalid trigger mode

E_PORTCONN

selected port is (is not) connected

E_BADDATA

bad data type propagated

E_NOMEM

insufficient memory

E_NOTRUNNING

no node is executing

E_COMM

communication or protocol error

2.2.2 Error return values

These values are returned by Kernel calls with otherwise “useful” return values in case of an error.

MGK_I_BADVAL

returned by ‘int’ functions

MGK_U_BADVAL

returned by ‘unsigned int’ functions

MGK_P_BADVAL

returned by pointer functions

2.2.3 Data type codes

These codes can be used to identify the type of dynamically typed data objects to the Kernel. They are of the ‘mgk_data_type’ type.

T_NODATA

no data available

T_UNKNOWN

unknown data type

T_CHAR

character (char) type

T_SHORTINT

short integer (short) type

T_INTEGER

integer (int) type

T_LONGINT

long integer (long) type

T_FLOAT

single precision (float) type

T_DOUBLE

double precision (double) type

T_BUFFER

buffer type

T_ARRAY()

array type

T_STRING

character string type

Notes:

1. The Kernel returns T_NODATA if no data is available.

2. T_UNKNOWN is not used in itself, but it can be OR-d with the T_BUFFER type.

3. T_BUFFER can be OR-d with any of the scalar types or with T_UNKNOWN or used alone. If the buffer is typed (i.e. the element type is one of the supported scalar types) then the Kernel will properly propagate the data object on distributed architectures even between hosts with different data formats.

4. The Kernel does not use T_ARRAY and T_STRING internally. These types can be used to instruct the Kernel to copy a user supplied array of data into a Kernel allocated buffer. The T_ARRAY type is really a macro, it needs the number of elements in the array. For example: the user enters a data object with the type (T_INTEGER | T_ARRAY(100)) into the Kernel. Internally a buffer with the necessary size to hold 100 integers will be allocated and the data copied. When the data is retrieved it will have the type (T_BUFFER | T_INTEGER). The T_STRING type is the equivalent of (T_ARRAY | T_CHAR), only the Kernel figures out the string size using the C ‘\0’ terminator character convention.

2.2.4 Node triggering modes

These constants select the triggering mode of a node. The are of the ‘mgk_trigger_mode’ type.

AT_IFALL

all inputs are necessary to trigger node

AT_IFANY

any one input is sufficient to trigger node

AT_SPEC

user defined input data pattern(s) trigger the node

2.2.5 Miscellaneous constants

MGK_MAX_PORT_COUNT
compile-time constant: the maximum number of node input/output ports (256)

MGK_MAX_NODE_PRIORITY

the highest allowed node priority value (255).

MGK_NODE_STOP_PRIORITY
the lowest node priority (0). Causes the node

to stop.

MGK_ALL_OUTPUT_CONNECTIONS
can be used in certain calls to designate all connections originating from a node output port.

2.3 Global variables

extern mgk_error_code mgk_errno;

Stores the error code from the last Multigraph Kernel call. (Similar to the ‘errno’ variable used in the C run-time library.)

2.4 API functions

2.4.1 Host configuration calls

Calls to determine distributed host configuration and to retrieve host handles that can later be used for building dataflow control graphs.

int mgk_get_number_of_hosts(void);

int mgk_local_host_index(void);

mgk_hostp mgk_get_host(unsigned int which);

int mgk_is_a_host(mgk_hostp host);

mgk_hostp mgk_local_host(void);

2.4.2 Dataflow graph node calls

These calls can be used the create and control the nodes of a dataflow control graph.

void mgk_register_script(mgk_script fn, char *name);

mgk_nodep mgk_create_node(mgk_script fn,

 unsigned int nin,

 unsigned int nout,

 unsigned int priority,

 mgk_trigger_mode tmode);

mgk_nodep mgk_create_node_indirect(char *scriptname,

 unsigned int nin,

 unsigned int nout,

 unsigned int priority,

 mgk_trigger_mode tmode,

 mgk_hostp host);

mgk_error_code mgk_add_node_trigger_mask(mgk_nodep node,

 mgk_portmask mask);

mgk_error_code mgk_add_node_trigger_mask_disp(mgk_nodep node,

 mgk_portmask mask,

 mgk_script fn);

mgk_error_code mgk_add_node_trigger_mask_disp_indirect(mgk_nodep node,

 mgk_portmask msk,

 char *scrname);

unsigned int mgk_portmask_bit(mgk_portmask mask,

 unsigned int index);

void mgk_set_portmask_bit(mgk_portmask mask,

 unsigned int index,

 unsigned int value);

mgk_error_code mgk_set_node_priority(mgk_nodep node,

 unsigned int prior);

unsigned int mgk_node_priority(mgk_nodep node);

mgk_error_code mgk_set_node_context(mgk_nodep node,

 void *context,

 mgk_data_type type);

void *mgk_node_context(mgk_nodep node,mgk_data_typep typep);

Notes:

1. Nodes can be created either by passing the script directly or indirectly (using a string name). When creating nodes in a remote host only the indirect method works. This requires that each host process registers the available scripts at startup using the ‘mgk_register_script’ call.

2. The triggering conditions of nodes with the ‘AT_SPEC’ triggering mode are specified after the node is created using the ‘mgk_add_node_trigger_mask…’ calls. These require a bitmap containing input port index patterns which should fire the node. The number of such bitmaps which can be attached to a node is not limited by the kernel. For example: it is possible to create a node with 5 inputs then specify that the node is triggered by the availability of data on ports 0,1 or 2,3,4. The ‘mgk_portmask_bit’ and ‘mgk_set_portmask_bit’ calls (actually they are macros) can be used to manipulate these bitmaps. It is possible to attach trigger masks such a way that each triggering condition invokes a different node script.

3. Each node can have a local data structure called context. This is preserved between node invocations. The 'mgk_set_node_context' and ‘mgk_node_context’ calls can be used to set and examine a node’s context, respectively.

2.4.3 Dataflow graph connection calls

The functions are used to connect and disconnect dataflow graph nodes and to inspect a graph’s topology.

mgk_error_code mgk_connect_nodes(mgk_nodep src, unsigned int srcport,

 mgk_nodep dst, unsigned int dstport);

mgk_error_code mgk_connect_nodes_len(mgk_nodep src, unsigned int sport,

 mgk_nodep dst, unsigned int dport,

 unsigned int maxlen);

unsigned int mgk_set_default_connection_length(unsigned int newlen);

mgk_error_code mgk_disconnect_nodes(mgk_nodep src, unsigned int sport,

 mgk_nodep dst, unsigned int dport);

unsigned int mgk_node_input_count(mgk_nodep node);

unsigned int mgk_node_output_count(mgk_nodep node);

unsigned int mgk_node_input_connection_count(mgk_nodep node,

 unsigned int port);

unsigned int mgk_node_output_connection_count(mgk_nodep node,

 unsigned int port);

mgk_nodep mgk_node_input_connection(mgk_nodep node,

 unsigned int port,

 unsigned int whichconn,

 unsigned int *connport);

mgk_nodep mgk_node_output_connection(mgk_nodep node,

 unsigned int port,

 unsigned int whichconn,

 unsigned int *connport);

Notes:

1. Dataflow node connections have a maximum allowed queue length. This is the number of data items waiting to be processed by the destination node. Waiting data items are queued at the input ports of the destination nodes. There is a default connection length maintained by the kernel that is settable by the ‘mgk_set_default_connection_length’ call. This value is used by ‘mgk_connect_nodes’, while ‘mgk_connect_nodes_len’ allows individual overrides on a per connection basis.

2. As the Kernel allows multiple incoming or outgoing connections to or from node input or output ports, it is necessary to identify these when using the network topology inspection calls. The ‘mgk_node_????_connection_count’ calls return the number of connections to or from a node port. These connections are not ordered in any particular way, but the kernel guarantees that passing different values within the connection count range as the third argument to the ‘mgk_node_????_connection’ calls will return all the different source or target nodes connected to the given port.

2.4.4 Script calls

The scripts attached to the nodes can use these calls to perform the data propagation and other node execution related functions.

mgk_nodep mgk_current_node(void);

void *mgk_receive(unsigned int port,mgk_data_typep typep);

mgk_error_code mgk_propagate(unsigned int port,

 void *data,

 mgk_data_type type);

void mgk_abort_node(int errorcode);

unsigned int mgk_ifany_trigger(void);

mgk_error_code mgk_trigger_mask(mgk_portmask mask);

Notes:

1. The Kernel identifies any data propagated in the dataflow graph by a pointer and a type code (see the section on the supported types).

2. Nodes with the ‘ifall’ triggering mode have data present at all of their inputs whenever they are started.

3. Nodes with the ‘ifany’ triggering mode have data present at at least one of their input ports. They can use the ‘mgk_ifany_trigger’ call to determine which port has the data.

4. Nodes of any triggering mode can use the ‘mgk_trigger_mask’ call to determine which of their input ports have valid data.

5. Any input not read by the ‘mgk_receive’ call will remain at the input port.

6. Calling ‘mgk_receive’ several times on the same port will return successively queued input data items as long as there are such data items available.

2.4.5 Dataflow graph control calls

These calls can be used to inject, inspect or remova data propagated in the dataflow graph form code which is not part of a node script. (I.e. some form of a control program.)

mgk_error_code mgk_write_node_input_port(void *data,

 mgk_data_type type,

 mgk_nodep node,

 unsigned int port);

mgk_error_code mgk_write_node_output_port(void *data,

 mgk_data_type type,

 mgk_nodep node,

 unsigned int port,

 unsigned int whichconn);

mgk_error_code mgk_clear_node_input_port(mgk_nodep node,

 unsigned int port,

 unsigned int count);

mgk_error_code mgk_clear_node_output_port(mgk_nodep node,

 unsigned int port,

 unsigned int whichconn,

 unsigned int count);

unsigned int mgk_node_input_port_length(mgk_nodep node,

 unsigned int port);

unsigned int mgk_node_output_port_length(mgk_nodep node,

 unsigned int port,

 unsigned int whichconn);

void *mgk_peek_node_input_port(mgk_nodep node,

 unsigned int port,

 unsigned int streampos,

 mgk_data_typep typep);

void *mgk_peek_node_output_port(mgk_nodep node,

 unsigned int port,

 unsigned int whichconn,

 unsigned int streampos,

 mgk_data_typep typep);

Notes:

1. The ‘mgk_write_node_????_port’ calls insert data into the dataflow graph.

2. The ‘mgk_clear_node_????_port’ calls delete the given number of queued data items from the node port.

3. The ‘mgk_node_????_port_length’ calls return the number of queued data items.

4. The ‘mgk_peek_node_????_port’ calls do not change the data. They merely allow the inspection of a queued data item.

5. As all data is queued at node inputs, the output versions of these calls really operate on the queues of the connected consumer data. Selection of the desired connection is done the same way is in the case of the topology inspection calls. Some calls (write and clear) allow the can be directed to perform the operation on all connected consumer input queues by using the ‘MGK_ALL_OUTPUT_CONNECTIONS’ as the connection selector.

2.4.6 Memory management calls

These calls can be used to allocate and free chunks of memory which can be used to hold objects more complex than the supported scalar types.

void *mgk_allocate_buffer(unsigned int size, int zero_memory);

void *mgk_copy_buffer(void *buffer);

mgk_error_code mgk_free_buffer(void *buffer);

int mgk_is_a_buffer(void *buffer);

unsigned int mgk_buffer_size(void *buffer);

mgk_error_code mgk_protect_buffer(void *buffer);

mgk_error_code mgk_unprotect_buffer(void *buffer);

Notes:

1. The Kernel implements an automatic garbage collector for buffer objects allocated using the above calls. The rules of this garbage collection scheme are as follows:

· Buffers can be in either protected or unprotected state.

· Any new buffer (just returned by ‘mgk_allocate_buffer’ or ‘mgk_copy_buffer’) is unprotected.

· A buffer becomes protected by either:

1. Entering it into the dataflow propagation mechanism, or

2. Setting it as a node’s context, or

3. Explicitly protecting it via ‘mgk_protect_buffer’.

· A protected buffer becomes unprotected by:

1. Receiving it from a node input port, or

2. Removing it from a node’s context, or

3. Unprotecting a previously explicitly protected buffer via ‘mgk_unprotect_buffer’.

· Any buffer which was allocated during a node script’s execution and nor protected, or became unprotected during the script’s execution will be freed after the script exits.

· The buffer protection/unprotection calls are effective only if a node script calls them.

· The Kernel will never garbage collect a buffer which was allocated from application code not called as a node script, except if such buffer is then propagated into the dataflow graph.

2. The Kernel does not allow buffer aliasing. If there are multiple consumer nodes connected to a single port, or if the node script propagates the same buffer to several output ports, the Kernel will make copies as necessary. This means that scripts can safely perform “in-place” computations on data structures held in buffers and then propagate the results.

2.4.7 Initialization and dataflow execution calls

These functions are used to initialize the Multigraph Kernel and to execute dataflow nodes or dataflow related distributed communications in a controlled fashion.

mgk_error_code mgk_initialize(int *argc, char ***argv);

unsigned int mgk_run(unsigned int num_nodes_to_run);

void mgk_set_comm_priority(unsigned int commpri);

void mgk_wait_for_comm_event(void);
Notes:

3. ‘mgk_initialize’ takes the addresses of the usual ‘argc’ and ‘argv’ arguments to the main program. It will remove any arguments which are relevant to the Kernel’s execution.

4. ‘mgk_run’ will execute at most the given number of nodes and or data exchanges with other kernels in distributed systems. It will return the number of actions performed.

5. ‘mgk_comm_priority’ can be used to set the priority of the distributed Kernel’s communication subsystem relative to the dataflow nodes. The default is 100.

6. ‘mgk_wait_for_comm_event’ will wait until there is a communication request from a remote Multigraph Kernel application. It is typically invoked when ‘mgk_run_nodes’ returns 0, which means that the local Kernel has no more work to do until some external action changes the state of the dataflow control graph.

