Model Migration tool
The need for model migration aiding tools rises from the fact that metamodels change from time to time, as the metamodeler’s thinking evolves about the specific domain. This implies that models must be valid according to the new version of the metamodel.

Simple cases are handled by the Resolver component of GME, during XME file import (like role name selection). Real complex model migrations (transformations) are aided by the GreAT toolset. The ModelMigrate tool is intended to fill the gap between the two, the migration process consisting of applying the user defined rules as XSL transformations onto the model files (XME file).
The tool is composed of main parts: Rule Editor and Processor. The Rule Editor window enables the user to define the metamodel changes as distinct transformation rules i.e.: kind name ‘InputSignals’ should be renamed to ‘InpSig’. The user can export a carefully selected set of rules into an XSLT file. It is advised to export some rules only on their own into a separate XSLT file for cases mentioned later, because the XSLT logic the rules transform to may not be so smart sometime to allow grouping. This rule definition is a GUI based activity, and although XSLT file editing not being required by the user, it is still a manual process, which does not benefit from the information found in the old and new versions of the metamodel.
The second part of the tool (the main window) is like a batch converter, allowing the user to specify multiple XSLT scripts to apply, to load the XME files to be transformed, and doing the required transformation in as many steps as many XSLT scripts are specified. After each step an output file is produced, which is then used as the input of the next step. 

For example: if the user specifies a three step migration (3 XSLT files) and it executes this transformation of a file called SFDemo.xme, then the first step produces a file called SFDemo_out01.xme, the second SFDemo_out02.xme, and the final step produces SFDemo_out.xme. This transformation process is supported by the Mga.MgaXslt COM object, through its IMgaXslt interface’s ApplyXslt method. The underlying XSLT processor is Xalan.

The main window shows two lists. The user must specify the XSLT scripts in the first , the XME files to transform in the second (file drag and drop enabled for both). Beside the menu commands, the user can right click for additional commands.
Automatic validator script generation

This feature parses a paradigm file (with .xmp extension) extracts the valid kinds (of fcos, folders and attributes) and generates a validator XSLT script which when applied will ignore any other element kind (folder, fco or attribute) not appearing on its roster. This feature is accessible from the Rules menu of the main window.

Description of the Rules Supported
KindNameChange

This simple modification is a Search&Replace function, operating on the kind attribute (in XML sense of the word) of each fco or folder element.
AttrNameChange

Similar to KindNameChange, except it renames attributes, operating on kind attributes of attribute elements (in XML sense). Since attributes in GME can be either global/local this can be specified in the dialog. In case of local attributes the Search&Replace operation is performed for the owner kind elements only. 
AttrTypeChange

Since GME stores the attribute values in the XML file as strings, type conversion occurs at import automatically, the only case requiring special care is when an non-number attribute kind (in the metamodel) is changed to FieldAttribute of type Integer or Double. In this case the import process will fail if the value found can not be converted to a number. That is why the AttrTypeChange rule is actually a checker, providing as result a list of elements whose attribute values need to be edited manually by the user, because are not numbers. 

EnumAttrValueChange

This Search&Replace operation changes enumeration items of EnumAttributes used in the metamodel. This rule should not be exported together with an AttrNameChange rule, which would rename the attribute itself. 

MoveDownElem
This rule enables the user to move a kind down the containment hierarchy. Folders or Models can be specified as the wrappers, the objects are packaged into.
The GUI requires the user to define the kind of object to be moved down, and its parent’s kind in the old model (Search part). If the element to be moved down was a root object, then for its parent the user must specify the RootFolder string.

The hierarchy (wrappers) need to be specified, which will enclose the object in the new paradigm (Replace part). This tree structure can be built by the “Insert Child” button. The wrappers can be folders and models, in the latter case the user must specify a “:M” string as a suffix after the model wrapper kind, otherwise the string is considered a folder kind.

This operation collects all objects found in the parent kind specified, wraps them into one wrapper. 

After this step is done no other operation is performed inside the wrapped kind (because of the way the XSLT script is implemented) so this rule should be used always alone.

MoveUpElem

Moving up an element is a little easier to specify. The user needs to define a hierarchy of element kinds to be matched. Whenever the tree construct specified is matched the leaf node will be moved up, (or unwrapped from the enclosing kinds), to become a sybling of the topmost element specified. No “:M” suffixes need to be used here, because the kind names are unique in the paradigm, thus a kind name uniquely identifies the type of element.
RemoveKind

This rule simply deletes any occurrence of the specified kind from the project file.

RemoveGlobalAttr, RemoveLocalAttr

For removal separate rules have been introduced for attributes. Removes any occurrence of the attribute kinds specified, in case of local attributes only from the enclosing kind specified.

